2023年08月28日 09:26:50 来源:浙江弘安传动有限公司 >> 进入该公司展台 阅读量:43
摘要:高碳铬轴承钢GCr15是Z为典型的轴承钢。通过对GCr15钢化学成分设计的解析,梳理撷取出其发明时所奠定的技术理念与基本准则——“使用性能、工艺性和经济性”。对于近一阶段新型轴承钢的研发,列举了国外遵循该准则的案例,指出了国内背离该准则的一些现象。重申强调,在轴承钢乃至新材料的研发中,必须铭记和秉承这一准则才是正确方向与根本之道。
关键词:滚动轴承;轴承钢;高碳铬轴承钢;使用性能;工艺性能;准则
高碳铬轴承钢GCr15(德国100Cr6,美国52100,日本SUJ2等)是一种十分优秀的钢种,自1901年由Stribeck发明以来,已经跨越了一个多世纪的历史,至今化学成分基本保持不变,仍作为滚动轴承主要用钢,做出了贡献[1]。随着科技与工业的不断进步,要求轴承在特殊工况与恶劣环境下工作的需求更加多样化,新型轴承钢的研究与开发也应运而生,呈现出密集之势,如近几十年推出的美国第三代高温轴承钢CSS-42L、德国高氮不锈钢Cronidur30、日本中碳表面硬化钢SHX等都是其中的典型代表。近一时期,中国对轴承钢特别是高性能轴承钢的研发也高度重视,在“产、学、研”不同层面形成了的热潮;但在国内外(尤其是国内)新钢种的研发中,有一些现象值得关注与思考,如对于坚持“面向工程应用”的基本要求,有些始终遵循秉持,有些似乎有所淡忘,有些则背离:因此,回顾重温百余年前GCr15钢成分设计的理念与准则,无疑具有很强的现实借鉴与指导意义。
1 GCr15钢化学成分设计的基本准则与解构分析
现代轴承工业诞生之初,轴承主要采用碳钢[2]及渗碳钢[3]制造。碳钢的冶炼技术成熟,价格低廉,但其综合性能难以满足轴承的使用特性要求。渗碳钢外硬里韧,具有适用于复杂载荷的梯度性能,但由于当时所用的固体渗碳法所限,渗碳不均匀导致的个别软点使轴承寿命大大降低,且热处理工艺复杂,生产周期长,效率低而成本高。因此,研发适用于轴承批量化生产的专用钢种成为迫切需求。GCr15钢的发明就是基于碳钢而取得的重大突破。GCr15及相当牌号轴承钢的主要化学成分(质量分数,下同)见表1,化学成分以碳、铬为主,除碳以外,其他合金元素的质量分数小于3%,系高碳、低铬、低合金、过共析钢。
表1 GCr15及相当牌号轴承钢的主要化学成分
对文献[4-6]进行解析研究可梳理撷取出当初GCr15钢化学成分设计时所体现的基本准则,即使用性能、工艺性、经济性。
1.1 使用性能
轴承钢必须首先满足其目标产品即轴承的使用性能要求。轴承的基本使用性能包括:
1)耐疲劳。由于轴承中滚动体与滚道是高副(点/线)接触,接触面积小而接触应力高(一般轴承通常达1 000~2 000 MPa),轴承的正常失效形式主要是滚动接触疲劳。含碳量(质量分数,下同)在0.8%~1.0%范围内,轴承的疲劳寿命基本相当;超过1%后,疲劳寿命下降。添加适量钼、硅等元素可增强回火稳定性,也有利于提高轴承的疲劳寿命。
2)耐磨损。轴承在运转过程中,工作部位(滚动,特别是滑动接触处)的磨损不可避免,这将影响轴承的旋转精度、运动稳定性、振动噪声等,因此轴承钢应具有较高的硬度(硬度通常是耐磨性的代用指标)。①碳——钢的硬度主要由马氏体硬度及未溶碳化物数量决定。在含碳量小于0.9%(也有研究结论为1.0%或1.2%)的范围内,含碳量越高,淬火后得到马氏体组织过饱和碳及未溶碳化物越多,硬度越高;超过此含碳量,则由于残余奥氏体增多,硬度反而开始下降。此外,在同样硬度的条件下,马氏体基体上有均匀细小的未溶碳化物析出,比单纯回火马氏体的耐磨性更高。因此,为了形成足够数量的碳化物,含碳量应趋于上限。②铬——铬是中碳化物形成元素,含铬量较高可大大增强钢的淬透性,实现高硬度、高强度与良好的耐磨性;但当含铬量超过1.65%时,会增加碳化物的不均匀性和残余奥氏体,降低冲击韧性和疲劳强度。③钼、锰——钼和锰分别是中、弱碳化物形成元素,适量添加可进一步提高钢的淬透性。若含钼量过高(超过0.5%),会产生非常稳定的粗大碳化物;锰有促进奥氏体晶粒粗大化的倾向,过多不利于增强韧性。当钼、锰与铬等并存配合时,可降低或抑制其他元素导致的回火脆性,提高回火稳定性,使硬度、强度的保持性加强。
3)高强度。轴承中的高副接触易产生塑性变形即压痕;轴承承受重载以及振动冲击、高速离心等附加载荷会产生很高的拉、压应力;有些轴承安装时需要较大的过盈配合而产生显著的环向应力:因此,轴承钢必须具有优良的机械强度,主要包括屈服强度、抗拉(压)强度和冲击韧性等。钢的强度与硬度成正比,一般有抗拉强度为布氏硬度的0.33~0.36倍。尽管硬度随着碳含量增高而提高,但当碳含量大于0.9%时,由于脆性二次渗碳体数量的增加,并形成网状,钢的强度反而下降,塑性、韧性也较差。除碳之外,铬、锰