7.BJT,MOSFET还是IGBT?
拓扑选择与所能用的功率器件有关。就目前可以买到的功率器件有双极型(BJT)功率管,MOSFET和IGBT。双极型管的电压定额可超过1.5kV,常用1kV以下,电流从几mA到数百A;MOSFET在1kV以下,常用500V以下,电流数A到数百A;IGBT电压定额在500V以上,可达数kV,电流数十A到数kA。
不同的器件具有不同的驱动要求:双极型晶体管是电流驱动,大功率高压管的电流增益低,常用于单开关拓扑。在低功率到中等功率范围,除了特别的理由以外,90%选择MOSFET。
理由之一是成本。如果产品产量大,双极性管仍然比MOSFET便宜。但是使用双极型功率管就意味着开关频率比MOSFET低,因此磁元件体积比较大。这样是否还合算?你得仔细研究研究成本。
高输入电压(380V)时,或推挽拓扑加上瞬态电压要求双倍以上电压,选择功率管你可能感到为难,如果采用双极型管,你可以买到1500V双极型管,而目前能买到MOSFET电压为1000V,导通电阻比BJT大。当然,你可能考虑用IGBT,遗憾的是IGBT驱动虽然像MOSFET,而它的开关速度与双极型管相似,有严重的拖尾问题。
可见,低压(500V)以下,基本上是MOSFET天下,小功率(数百瓦)开关频率数百kHz。IGBT定额一般在500V以上,电流数十A以上,主要应用于调速,基本上代替高压达林顿双极型管。工作频率可达30kHz,通常在20kHz左右。因为导通压降大,不用于100V以下。
(a)IGBT与MOSFET并联(b)BJT与MOSFET串联
为了提高IGBT或BJT的开关速度,也可将MOSFET与BJT或IGBT组合成复合管。图3(b)中U(BR)CBO/70A的BJT与50V/60A的MOSFET串联,用于三相380V整流电感滤波输入(510V)双端正激3kW通信电源中。
导通时首动功率MOSFET,这时BJT工作在共基极组态,发射极输入电流,或因MOSFET导通漏极电压下降,BJT发射结正偏,产生基极电流,导致集电极电流,通过比例驱动电路形成正反馈,使得BJT饱和导通。当关断时,首先关断MOSFET,发射结反偏,使得BJT迅速关断。共基极频率特性是共射极的β倍。提高了关断速度。低压MOSFET导通电阻只有mΩ数量级,导通损耗很小。实际电路工作频率为50kHz。
MOSFET与IGBT并联也是利用MOSFET的开关特性。要达到这一目的,应当这样设计MOSFET和IGBT的驱动:开通时,PWM信号可同时或首动MOSFET导通,后导通IGBT。IGBT零电压导通。关断时,先关断IGBT,IGBT是零电压关断;在经过一定延迟关断MOSFET。MOSFET承担开关损耗;在导通期间,高压MOSFET导通压降大于IGBT,大部分电流流过IGBT,让IGBT承担导通损耗。这种组合实际例子工作频率50kHz,3kW半桥拓扑。
8.连续还是断续
电感(包括反激变压器)电流(安匝)连续还是断续:在断续模式的变换器中,电感电流在周期的某些时刻电流为零。电流(安匝)连续是要有足够的电感量维持最小负载电流ILmin(包括假负载),在周期的任何时刻电感都应当有电流流通。即

其中T-开关周期;D=Ton/T-占空比;Ton-晶体管导通时间。我们假定整流器的正向压降与输出电压相比很小。要是最小负载电流为零,你必须进入断续模式。
在实际电源设计时,一般电源有空载要求,又不允许电感体积太大,在轻载时肯定断续,在这种情况下,有时设置假负载,并当负载电流超过使假负载断开,否则可能引起闭环控制的稳定性问题,应当仔细设计反馈补偿网络。
同步整流是一个例外。变换器应用同步整流总是连续模式,没有最小电感要求。
9.同步整流
在现今许多低输出电压应用场合,变换器效率比成本更(几乎)重要。从用户观点来说,比较贵的但高效率的变换器实际上是便宜的。如果一台计算机电源效率低,真正计算时间常常很少,而待机时间很长,将花费更多的电费。
如果效率很重要,就要考虑采用同步整流技术。即输出整流采用MOSFET。当今可买到许多IC驱动芯片既能驱动场效应管,也能很好驱动同步整流器。
采用同步整流的另一个理由是它将电流断续模式工作的变换器转变为电流连续工作模式。这是因为即使没有负载,电流可以在两个方向流通(因为MOSFET可以在两个方向导通)。运用同步整流,解除了你对模式改变的担心(模式改变可能引起变换器的不稳定)和保证连续的最小电感要求。
同步整流一个问题这里值得提一下。主开关管在同步整流导通前关断,反之亦然。如果忽略了这样处理,将产生穿通现象,即输入(或输出)电压将直接对地短路,而造成很高的损耗和可能导致失效。在两个MOSFET关断时间,电感电流还在流。
通常,MOSFET体二极管不应当流过电流,因为这个二极管恢复时间很长。如假定MOSFET截止时体二极管流过电流,当体二极管恢复时,它在反向恢复起短路作用,所以一旦输入(或输出)到地通路,发生穿通,就可能导致变换器失效,如图4(b)所示。
解决这个问题可用一个肖特基二极管与MOSFET的体二极管并联,让它在场效应管截止时流过电流。(因为肖特基的正向压降比体二极管低,肖特基几乎流过全部电流,体二极管的反向恢复时间与关断前正向电流有关,所以这时可以忽略)
10.电压型与电流型控制
开关电源设计要预先考虑是采用电压型还是电流型控制,这是一个控制问题。几乎每个拓扑都可以采用两者之一。电流型控制可以逐个周期限制电流,过流保护也变得容易实现。同时对推挽或全桥变换器可以克服输出变压器的磁偏。但如果电流很大,电流型需要检测电阻(损耗很大功率)或互感器(花费很多钱)检测电流,就可能影响你的选择。不过这样过流保护检测倒是顺水推舟了。但是,如果你把电流控制型用于半桥变换器,有可能造成分压电容电压不平衡。所以对于大功率输出,应当考虑选择那一种更好。
11.结论
你在设计一个电源之前,应当预先知道你的电源工作的系统。详细了解此系统对电源的要求和限制。对系统透彻地了解,可大大降低成本和减少设计时间。
实际操作时,你可以从变换器要求的规范列一个表,并逐条考虑。你将发现根据这些规范限制你可以选择的拓扑仅是一个到两个,而且根据成本和尺寸拓扑选择很容易。一般情况下,可根据以上各种考虑选择拓扑:
1.升压还是降压:输出电压总是高于还是低于输入电压?如果不是,你就不能采用Buck或Buck/Boost。
2.占空度:输出电压与输入电压比大于5吗?如果是,你可能需要一个变压器。计算占空度保证它不要太大和太小。
3.需要多少组输出电压?如果大于1,除非增加后续调节器,一般需要一个变压器。如果输出组别太多,建议采用几个变换器。
4.是否需要隔离?多少电压?隔离需要变压器。
5.EMI要求是什么?如果要求严格,建议不要采用像Buck一类输入电流断续的拓扑,而选择电流连续工作模式。
6.成本是极其重要吗?小功率高压可以选择BJT。如果输入电压高于500V,可考虑选择IGBT。反之,采用MOSFET。
7.是否要求电源空载?如果要求,选择断续模式,除非采用问题8。也可加假负载。
8.能采用同步整流?这可使得变换器电流连续,而与负载无关。
9.输出电流是否很大?如果是,应采用电压型,而不是电流型。